1.1 Электрический заряд

Рассмотрим поведение векторов E и D на границе раздела двух однородных изотропных диэлектриков с проницаемостями и при отсутствии на границе свободных зарядов.

Граничные условия для нормальных составляющих векторов D и E следуют из теоремы Гаусса. Выделим вблизи границы раздела замкнутую поверхность в виде цилиндра, образующая которого перпендикулярна к границе раздела, а основания находятся на равном расстоянии от границы (рис. 2.6).

Так как на границе раздела диэлектриков нет свободных зарядов, то, в соответствии с теоремой Гаусса, поток вектора электрической индукции через данную поверхность

.

Выделяя потоки через основания и боковую поверхность цилиндра

,

где - значение касательной составляющей усредненное по боковой поверхности . Переходя к пределу при (при этом также стремится к нулю), получаем , или окончательно для нормальных составляющих вектора электрической индукции

.

Для нормальных составляющих вектора напряженности поля получим

.

Таким образом, при переходе через границу раздела диэлектрических сред нормальная составляющая вектора терпит разрыв, а нормальная составляющая вектора непрерывна.

Граничные условия для касательных составляющих векторов D и E следуют из соотношения, описывающего циркуляцию вектора напряженности электрического поля. Построим вблизи границы раздела прямоугольный замкнутый контур длины l и высоты h (рис. 2.7).

Учитывая, что для электростатического поля

,

и обходя контур по часовой стрелке, представим циркуляцию вектора E в следующем виде:

,

где - среднее значение En на боковых сторонах прямоугольника. Переходя к пределу при , получим для касательных составляющих E

.

Для касательных составляющих вектора электрической индукции граничное условие имеет вид

Таким образом, при переходе через границу раздела диэлектрических сред касательная составляющая вектора непрерывна, а касательная составляющая вектора терпит разрыв.

Преломление линий электрического поля. Из граничных условий для соответствующих составляющих векторов E и D следует, что при переходе через границу раздела двух диэлектрических сред линии этих векторов преломляются (рис. 2.8). Разложим векторы E1 и E2 у границы раздела на нормальные и тангенциальные составляющие и определим связь между углами и при условии . Легко видеть, что как для напряженности поля, так и для индукции справедлив один и тот же закон преломления линий напряженности и линий смещения

.

При переходе в среду с меньшим значением угол, образуемый линиями напряженности (смещения) с нормалью, уменьшается, следовательно, линии располагаются реже. При переходе в среду с большей линии векторов E и D, напротив, сгущаются и удаляются от нормали.


Вопросы

1) Из какого соотношения следуют граничные условия для касательных составляющих векторов E и D
2) Из какого соотношения следуют граничные условия для нормальных составляющих векторов E и D
3) Как зависит угол, образуемый линиями напряженности с нормалью, от соотношения диэлектрических постоянных сред

наверх

Хостинг от uCoz